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Abstract

Application of the genetic algorithm (GA) in conjunction with the concept of virtual components (VC) to determine 1D concentration
profiles from EPRI spectra (images) is described. In this approach the concentration profile is expressed as the superposition of virtual
components described by analytical functions of the Gaussian and Boltzmann type. The method was implemented in the computer pro-
gram ACon, which allows for fully automated profile extraction via the nonlinear least-squares fitting of experimental images. The para-
metric sensitivity of the GA internal parameters such as population size, probabilities of the crossover, mutation and elitist retention to
the search space was investigated in detail in order to find their optimal settings. The customized genetic algorithm was evaluated using
simulated and experimental test data sets and its performance was compared with the Monte Carlo approach.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Electron Paramagnetic Resonance Imaging (EPRI) is a
powerful non-invasive technique for the determination of
the spatial distribution of spins in the investigated samples
[1,2]. Until the early 1980s the EPR spectra were usually
measured with tacit assumption that the spin distribution
could be treated as approximately uniform. However, since
the pioneering paper of Hoch and Day describing the
repartition of color centers in natural diamonds [3], map-
ping of the spin distribution in vast range of materials
became a well-established field of the EPRI applications.
Major advances have been made in biology, polymer deg-
radation research [4–7] and spin dosimetry [8–10]. For a
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more comprehensive account, monographs or specialized
review articles can be recommended [5,11,12].

The 1D image (the EPRI spectrum) is a convolution of
the gradient-off spectrum with the concentration profile
along the sample depth. A common approach for the
deconvolution procedure is based on the Fourier transform
(FT), followed by point-by-point least-squares refinement
of the provisional profile extracted by FT analysis using
Monte Carlo method [6,13]. However, such procedure
often gives rise to high noise, especially when sharp edges
in the profile are present. To circumvent this problem,
the concentration profile obtained by FT has been fitted
by analytical functions and convoluted with the gradient-
off EPR spectrum to get the best agreement with the exper-
imental image [14]. As the number of parameters to be
optimized in such a procedure may be large for some com-
plicated multimodal concentration distributions, a robust
and efficient fitting subroutine is an indispensable compo-
nent of the EPRI software. The complexity of the problem,
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however, imposes several restrictions on suitable optimiza-
tion methods for profile determination, which should avoid
computationally time-consuming derivative information,
be resistant to local minima, and be effective in nonlinear
problems. These requirements disfavor direct search meth-
ods that usually lead to suboptimal solutions, in favor of
global techniques such as simulated annealing [15] or
genetic algorithms (GA) [16,17] that tackle difficult optimi-
zation problems.

The genetic algorithm is an optimization method
employing a probabilistic, non-local search heuristics that
patterns natural evolution. The major strength of GA is
the ability to explore and exploit a large poorly known
parameter space with no initial guesses and derivative
information, without trapping in local minima. As a result,
genetic algorithms are of growing interest in various fields
of science [18–20], with many successful applications in
spectroscopy [21–23]. Recent notable examples are pro-
vided, for instance, by Meerts et al. [24–26]. There is also
a growing number of GA applications in the field of EPR
spectroscopy, including optimization of static multicompo-
nent powder spectra [27–29] and motionally-restricted
fluid-solution spectra [30–32].

In this study, we present a new VC-GA approach to
automate the analysis of EPRI spectra. To eliminate the
deconvolution noise, the 1D concentration profiles,
expanded in terms of virtual components (VC) described
by Gaussian functions, are convoluted with the gradient-
off spectrum, and fitted to the experimental image using
the genetic algorithm optimization. To our knowledge,
the only successful application of GA for the determination
of 1D concentration profiles was reported in our studies on
the HPEC polymer degradation [33].
2. Theory

2.1. Determination of the concentration profile

As mentioned above, two spectra are needed to deter-
mine the 1D concentration profile from EPR imaging:
the regular EPR spectrum and the 1D image (or EPRI
spectrum) measured in the presence of the magnetic field
gradient. The 1D image, I(B), is a convolution of the
EPR spectrum S(B) registered in the absence of gradient
with the function Y(r) describing spatial distribution of
paramagnetic centers (the profile) along the gradient direc-
tion r, modified by the longitudinal sensitivity response of
the cavity, C(r):

IðBÞ ¼
Z þ1

�1
SðB� r � gradrBÞ � YðrÞ � CðrÞð Þdr ð1Þ

The convolution is legitimate (i.e., gives the right image)
if the gradient-off EPR spectrum exhibits no spatial depen-
dence. For short samples (less then 4 mm in X band), the
sensitivity response of the resonator can be treated as being
practically uniform, C(r) = const. Then in a shorter form
this equation can be rewritten as I = S * Y where * is the
convolution symbol.

A convenient procedure for solving the deconvolution
problem is based on the Fourier transform (FT) theorem,
which states that the Fourier transform of the convolution
of two functions is equal to the product of their Fourier
transforms (F(I) = F(S)F(Y)) [6]. The problem is not trivial
from the mathematical point of view and, as already men-
tioned, this method results in high frequency noise in the
calculated profile, inducing some artifacts in the abruptly
changing regions as well.

The inverse problem may be reformulated as an
optimization problem. For solving Eq. (1), the a priori
known spectrum S(B) can be regarded as a kernel func-
tion used for extraction of the searched profile Y(r)
from the experimental image I(B) registered at a given
magnetic field gradient [34]. However, the resultant
inverse problem does not fulfill the Hadamard postulate,
and is inherently mathematically ill-posed [35]. The solu-
tions are highly unstable with respect to even small per-
turbations in the input data, and special regularization
techniques are needed to obtain sensible results. In the
nonlinear case, the corresponding objective function
may be highly complicated, exhibiting multiple local
optima, and often making the minimization processes a
nontrivial issue. The success of the traditional local opti-
mization methods strongly depends on the starting point
[36,37], and is rapidly restrained with increasing number
of the parameters, often failing to locate the global min-
imum. Thus, a promising solution of such problems can
be obtained using a robust search, like that provided by
the genetic algorithm.
2.2. Optimization procedure

Mathematically the calculated concentration profile, Y,
can be represented by a set of discrete data points
Y = (Y1. . .Yn). It can next be expanded in terms of virtual
components (VC) described by a series of Gaussians sup-
plemented by two boundary functions of the Boltzmann
type that allow for more accurate reproduction of steep
changes at the edges of the sample.

Y ¼ Bðr1; a1; h1Þ þ
Xn�1

k¼2

Gðrk; ak; hkÞ þ Bðrn; an; hnÞ ð2Þ

with Gðrk; ak; hkÞ ¼ ak � exp ½�ðr� rkÞ2=2h2
k � and B(rk, ak,

hk) = ak/[1 + exp(r � rk)/hk], where rk, ak and hk describe
the position, the contribution coefficient and the half-width
of the virtual component k. Use of analytical functions for
this purpose has been proved elsewhere [14]. For conve-
nience, the extension of the profile can be rescaled into
the [0, 1] range.

Following Eq. (1), the overall calculated profile can be
next convoluted with the kernel function (the gradient-off
spectrum) to give the corresponding EPRI image i. If



T. Spałek et al. / Journal of Magnetic Resonance 189 (2007) 139–150 141
P ¼ fpj
ig represents a full set of the parameters of all

virtual components needed to describe the overall profile,
than Y = f(P). Thus, the profile extraction problem con-
sists in finding such P to make the calculated image
i = f(S,P) as close as possible to the experiment. The qual-
ity of the fit can be characterized by the weighted sum of
the square deviations (RMS) between the calculated (i)
and experimental (I) images, normalized by the number
of data points n. However, since the virtual components
constituting a given profile have essentially no physical
meaning, any explicit information about the specific values
of the associated parameters P is actually not required.
Therefore, for the sake of the convenience, they can be
treated as latent (internal) tunable variables of the corre-
sponding profile Y, which are initialized and optimized
automatically but not reported.
Fig. 1. Flowchart of the VC-GA method for automatic extract
2.3. Adapting the genetic algorithm to automated analysis of

EPRI spectra

Many variants of evolutionary algorithms have been
developed [38–40]. Below we present a brief description
on how to tailor the genetic algorithm described elsewhere
[41], and to automate the process of determining 1D con-
centration profiles from EPRI spectra via computer least-
squares fitting, based on the concept of virtual components
(VC) expansion and genetic algorithm (GA) optimization
(the VC-GA approach).

The structure of the algorithm is outlined in the flow-
chart shown in Fig. 1, while the notation is explained in
Table 1. To tailor the GA machinery towards a particular
application, one should provide the size m of the initial
population Xt(m) of individuals Gi, i = 1, . . .,m, the coding
ion of the 1D concentration profile from the EPRI spectra.



Table 1
Notations used in the flowchart of GA-based optimization of EPRI
spectra

Notation Definition

I, i experimental and calculated EPRI spectra
(images)

Y concentration profile
S experimental gradient-off EPR spectrum
Y concentration profile
P = {pi} full set adjustable latent parameters pi

Xt(m) tth population of the size m of individuals Gi

Gi = {X1,X2, . . .,Xn} an individual i composed of n chromosomes
Xj corresponding to n virtual components
constituting given concentration profile

Xj = [x1,x2,x3]xi 2 [ � 1,1] a string of chromosome with three genes
corresponding to three parameters to be
optimized

F(Gi) fitness index of an ith individual
RMS(i, I,w) root mean square error function
Gwin the fittest individual in the population t

G
0

i an individual i complemented by its fitness
index F(Gi)

tmax maximum number of generations
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method, the fitness index F(Gi) of each individual, and the
formulation of genetic operators.

In the adopted representation, a full set of the latent
variables P to be optimized was encoded into an individual
G = {X1,X2, . . .,Xn}, composed of n chromosomes Xj corre-
sponding to n virtual components of the overall profile.
The polychromosomic individuals were preferred over the
usual monochromosomic species, since they reflect better
the structure of the optimization subject (reconstruction
of the profile by superposition of virtual components).
Each chromosome is a string of the form Xj ¼ fxj

1; x
j
2; x

j
3g,

where xj
i stands for the genes representing the latent param-

eters pj
i of the virtual component j that are optimized, but

not reported overtly, as already mentioned. In the applied
representation, the genes are coded as 32-bit floating point
numbers from the [0, 1] range. Although there is a lack of
well established theoretical justification for using real
instead of binary coded genes, most floating point optimi-
zations seem to prefer real-valued versions of GA for solv-
ing high precision optimization problems when the
parameters to be adjusted are continuous [42,43]. These
real-valued versions of GA not only retain the proximity
between two points in the representation and the problem
spaces [41], but are more natural to implement than their
binary analogs [44].

The adjustable internal parameters, i.e., the position rj,
contribution aj and the width hj, of the virtual component
j are related to the corresponding genes xj

i in the following
way:

pj
i ¼ aix

j
i þ bi ð3Þ

where ai and bi (i = 1, 3) are empirically determined con-
stants. All parameters are initialized randomly at the begin-
ning of the optimization process. In such an approach the
values of the latent variables are assigned without any prior
knowledge about the profile structure, making the GA
optimization a fully unsupervised method. Only the num-
ber of the virtual components and the type of the analytical
functions (Gaussian or Boltzmann) have to be selected
from the menu. The overall structure of such a representa-
tion is shown below in more detail.

Following the analogy with the gene–parameter rela-
tionship, the information contained in the chromosome
Xj can be translated into the parameter space using the rela-
tion Pj = A Æ Xj + B, where P j ¼ fpj

1; p
j
2pj

3Þ, and A =
{a1,a2,a3} and B = {b1,b2,b3} are the strings of the corre-
sponding empirical constants. Consequently, the complete
set P of latent parameters describing the profile Y is
obtained by simple aggregation of the internal parameters
of all partaking virtual components j, P = {Pj}, j = 1, . . .,n.

In this approach the ensemble of the chromosomes {Xj}
constituting an individual Gi can be identified with a geno-
type encoding all profile parameters Gi fi P. The associ-
ated phenotype is the EPRI image derived from these
parameters. Both spaces are linked together by the transla-
tion function (the convolution) converting the genotype
space into the phenotype space (i = f(S,P(Gi)), which is
in turn compared with the environment (the experimental
image I). The error function RMS(i, I,w) is used as a fitness
criterion to be minimized (Fig. 2).

The flowchart shown in Fig. 1 explains the interplay
between the GA optimization and the EPRI convolution
program. At the beginning, an initial population X1(m) of
individuals Gi (potential solutions) has to be created ran-
domly. Each gene of an individual Gi encodes a preliminary
value of the associated adjustable parameter. The individu-
als are next evaluated by calling the program EPRI, and
the calculated fitness values, F(Gi), are associated with
the Gi strings ðGi ! G0iÞ. This is computationally the most
time consuming step of the GA optimization, since it
requires numerical simulation of the EPRI image. Actually
the genetic algorithm makes use of a modified fitness func-
tion F 0(Gi) = F(Go) � F(Gi), where F(Go) is the fitness of the
worst adapted individual, i.e., that of the highest
RMS(i, I,w) value in the initial population.

Based on the F 0(Gi) values, the G
0

i individuals are ranked
according to their merit, and the fittest individual (the win-
ner) is duplicated and saved as Gwin. The set of parameters
associated with Gwin is then used to calculate the overall
concentration profile Y, which is automatically displayed.
Thus, at this stage the GA optimization is tantamount with
the Monte Carlo search for an advantageous starting
point, with the number of trials equal to the population
size.

In the next step, the population is subjected to the repro-
duction process using the genetic operations in the
sequence indicated in Fig. 1. The selection operation
chooses the best individuals of the current population for
reproduction in the next generation. A fitness proportion-
ate selection (roulette wheel) [45] along with an elitist suc-
cession was applied to produce the progeny. In this



Fig. 2. The relationship between the genotype and phenotype spaces. The polychromosomic genotype of an individual Gi is mapped into the
corresponding parameter space P = {Pj}, defining the virtual components, VC, constituting the profile Y. Next Y is used for convolution with the kernel
spectrum S to give the EPRI image i (the phenotype) fitted to the experimental image I (the environment).
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approach the reproduction probability Wt(Gi) of an indi-
vidual Gi is defined by a roulette wheel slot in proportion
to its F 0(Gi) value, normalized over the whole population

W tðGiÞ ¼
F 0ðGiÞtPn
i¼1F 0ðGiÞt

ð4Þ

To ensure that good solutions are not lost regularly, a
fraction pelt of the top individuals from the parent popula-
tion is placed in the next generation (from which an equiv-
alent number of the worst individuals were removed)
without any changes. The actual fraction of retention
defines the selection pressure. When the size of the elite is
large from one generation to another, the algorithm can
exhibit narrow population diversity. On the other hand, a
small fraction might not retain enough of the desirable
characteristics to overcome convergence problems. There-
fore, the optimal pelt value should be determined by appro-
priate meta-optimization of GA (vide infra).

The descendent individuals are produced through the
operations of crossover and mutation. The recombination
process was controlled by a probability criterion
pcrs > pthrs

crs , where pthrs
crs is an arbitrary threshold value for
the crossover probability. A generalized k-point crossover
operator was used for this purpose. The larger the number
of the crossover points k, the more destructive is the corre-
sponding operator. Five different crossover variants (a sin-
gle point swapping and arithmetic, a two point swapping
and arithmetic and a uniform crossover) were implemented
in the GA [41]. The actual crossover option was selected at
random at each run of the algorithm and the frequency of
its use was determined by preset probabilities.

In the last step the chromosomes undergo the mutation
operation. This operation is helpful in preventing prema-
ture convergence. A probability variable controls the muta-
tion process, and usually has a small value inversely
proportional to the number of genes [46]. We applied a
sequential two-step mutation scheme invoking uniform
and non-uniform gene variation, described by the follow-
ing fluctuation function,

Dðs; zÞ ¼ z 1� rð1�s=tmaxÞb
� �

ð5Þ

where s stands for the evolution time, r is a random num-
ber from the [0, 1] range, z limits the maximum variation of
the given gene, whereas b describes the system non-unifor-
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mity [41]. It is well-known that a high mutation level at the
beginning of a genetic algorithm (small values of s) favors
convergence by enhancing the exploration of the search
space. However, at later stages of the optimization process
(high values of s), once the vicinity of the optimum is at-
tained, high mutation levels may be counter-productive.
However, to avoid any premature convergence to local
subminima, the uniform mutation was permanently
refreshing the pool of genes while the population evolves.

The resulting population is sorted by fitness and the top
m individuals are retained for the next generation Xt+1(m).
The iterative cycles (generations) are repeated until the
optimization or the stopping criteria (t 6 tmax) are fulfilled.

3. Program for concentration profile determination

The program, called ACon, was written in Microsoft
visual C++ 6.0 using the MFC library. The program based
on the flow chart shown in Fig. 1 runs under Microsoft
Windows with full 32 coding. Apart from the genetic fitting
of the EPRI spectra based on the virtual components
approach (GA-VC), the Fourier transform followed by
point-by-point Monte Carlo refinement method (FT-MC)
is also available. The ACon program has a user friendly
interface based on mouse-driven access to pull-down
menus and dialog boxes for fast communication. Interac-
tive graphics for monitoring the simulation process and
visualization of data in conjunction with the experimental
EPRI spectra, including zoom and other standard display
options, is available. Gradient-off spectra and gradient-on
images, as well as the corresponding 1D concentration pro-
files can be saved as ASCII files, or in digital form. Hard-
copy is available using any output device supported by
Microsoft Windows. The program is available upon
request.

4. Data sets

The performance of the GA optimization subroutine
was tested using synthetic and experimental data sets of
increasing complexity, corresponding to typical radical
concentration profiles observed during accelerated aging
of polymers [13,14]. A gradient-off isotropic test spectrum
T0, (giso = 2.00, aiso/gb = 1.5 mT) (Fig. 3a), represents the
nitroxide radicals (HAS-NO) formed in the commercially
available stabilizer Tinuvin 770, during polymer
degradation.

The spectrum T0 was next convoluted with two types of
profiles a rectangular one (Fig. 3b, left) and a bimodal one
(Fig. 3c, left), giving EPRI test spectra (images) T1 and T2

(Fig. 3b (right) and c (right)). The efficiency of the GA fit-
ting was also tested using experimental data sets. Fig. 4
(upper left) shows the gradient-off ESR spectrum E0 of
HAS-NO radicals produced during thermal degradation
of heterophasic propylene–ethylene copolymers (HPEC).
Two HPEC samples differing in ethylene content were
obtained from Dow Chemical Company: HPEC1
(Mn = 60,700, Mw = 227,000) and HPEC2 (Mn = 90,400,
Mw = 428,000). The ethylene content was 25 wt.% in
HPEC1 and 10 wt.% in HPEC2, ±2% [23]. The Tinuvin
770 stabilizer was provided by Ciba Specialty Chemicals.
More information regarding the HPEC system can be
found elsewhere [33]. The EPRI images of the samples after
thermal degradation at various conditions (E1, E2, E3, E4),
are presented on the left side of Fig. 4, whereas the images
of the UVA-irradiated samples (E5, E6, E7, E8) are given on
the right side of Fig. 4.

All experimental data were collected at 340 K with a
Bruker EMX spectrometer operating at 9.4 GHz with
100 kHz magnetic field modulation, equipped with an
Acquisit 32 Bit WINEPR data system version 3.01, and
an ER 4111 VT variable temperature unit.

5. Meta-optimization of the intrinsic GA parameters

The operational efficiency of a genetic algorithm is inti-
mately controlled by the values of such intrinsic parame-
ters as the population size, the crossover and mutation
probabilities, the decay factor and the percentage of elitist
retention, which control various aspects of the algorithm
in a given implementation. An optimal setting for these
parameters would significantly enhance the general per-
formance of the GA across different target sets. However,
there is no sound theoretical basis for a priori assignment
of their values, although some general hints are available
[16,40]. Thus, in order to determine such settings for our
application, parametric sensitivity tests were performed.
Because of the stochastic nature of GA, several indepen-
dent trials with randomly varying starting populations
were performed in all testing experiments, in order to
obtain reliable results and minimize the influence of the
initial population.

5.1. Optimization of the population size

In general this parameter should be determined
according to the specificity of the problem, and usually
it is necessary to try out a range of the m values. We have
tested this issue in more detail using T1 and T2 data sets.
The size of the population was systematically varied from
25 to 500 with the step increment of 25, while all other
parameters were kept constant at pcrs = 0.8 and
pmut = 0.02. Generally, the RMS values averaged over
10 runs and measured after the constraint calculation
time, exhibited a moderate dependence on the population
size with broad minima appearing at m = 150 and 200 for
the T1 and T2 targets, respectively. However, the results
were quite scattered, similarly to those previously
observed in the case of powder EPR spectra, and dis-
cussed elsewhere [28]. In fact, the selection of the initial
population size appeared to be less critical than the selec-
tion of the crossover and mutation rates (vide infra), and
for further investigations the m value fixed at 200 was
used in both cases.



Fig. 3. Simulated test spectra: gradient-off EPR spectrum T0 (a), EPRI image (left) obtained from the convolution of T0 with a rectangular profile (right)
(b), and with a bimodal test profile (right) (c).
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5.2. Establishing the crossover and mutation rates

The sensitivity of the GA fitting of the EPRI images to
the probabilities of crossover and mutation was examined
using the T1 and T2 data sets. Optimization of these param-
eters is crucial because the relative rates of the crossover
and mutation determine the balance between the exploita-
tion and exploration moves, which are vital for the overall
performance of the algorithm. The probability of the cross-
over (pcrs) was paced in the range [0,1] with a 0.1 step,
whereas the mutation probability (pmut) was paced in the
range [0, 0.1] with a 0.01 step. As a result, a grid of 121 data
points was created and the GA optimization, with a
population of size m = 200, was successively iterated over
the generations for each pair of the pcrs and pmut values.
The results of the parametric sensitivity study, averaged
over 10 independent runs, are summarized in the form of
operator performance maps shown in Fig. 5, where the
logarithm of the convergence efficiency (gauged by RMS)
is drawn as a function of the crossover and mutation rates.

Inspection of Fig. 5 indicates that an increase of the
crossover rate tends to enhance the performance of GA
for the T1 and T2 targets. In the case of the test image
T1, the optimal area is rather narrow and is located near
pcrs � 0.8. The optimal values for T2 are found in a broader
range of the values (from 0.6 to 0.9), again with the mini-
mum placed in the vicinity of pcrs = 0,8. Crossover proba-
bilities larger than 0.9 or smaller than 0.5 distinctly
deteriorate the performance. The optimal range for the
mutation probabilities is more confined in comparison to
the crossover rate. Large (pmut > 0.04–0.03) and very small
(pmut < 0.01) rates become harmful quite rapidly. For test
spectra, the advantageous values appear at pmut � 0.02.
The results of the sensitivity studies for the crossover and
mutation operators revealed a strong dependence of the
GA performance on the preset probability values, and to
a less extent on the nature of the investigated target. The
mutation rates around 0.02 and the crossover rates in the
range of 0.8 appear to be a reasonable optimal setting for
further investigations.

5.3. Optimization of the elite size

Elitism affects the selection pressure in the population.
Its optimal setting may considerably accelerate the speed
of the convergence. The sensitivity of the GA performance
to the elite size was investigated using the same test data
sets as above. The fraction of the elitist retention was grad-
ually varied from pelt = 0 to 0.50 by increments of 0.05,
keeping all other parameters constant. The results, aver-
aged over 10 independent runs, are shown in Fig. 6. For
both test profiles the curves exhibit quite distinct minima
at pelt � 0.10. Thus, the performance of GA has gained
much, once optimal fraction of the fittest solutions is
shielded from the apparently deleterious effects of the sub-
sequent crossover operations, while the population evolves.
Interestingly, the optimal pelt value seems to be not very
sensitive to the nature of the investigated targets. Thus,
in the following tests, the elite size was fixed at a value cor-
responding to pelt = 0.10.



Fig. 4. Experimental EPR (left upper corner) and EPRI spectra registered at 340 K of thermally-treated at 433 K (left) and UVA-irradiated (right) HPEC
polymers for the indicated conditions. The sample shape, the direction of UV irradiation, and of the magnetic field gradient (G) are shown in the upper
right corner (experimental data taken from Ref. [33]).

Fig. 5. Operator performance maps for parametric sensitivity of the GA convergence as a function of the mutation and crossover probabilities (a) for T1

and (b) for T2 targets. The color coding displays the convergence efficiency measured by the logarithm of the RMS value, averaged over 10 independent
runs.
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6. Determination of concentration profiles from 1D ESRI

spectra

6.1. Simulated data

Undoubtedly, the first step in evaluating the perfor-
mance of the GA optimization is to fit a simulated image
derived from the a priori known profile. Only in such cases
accurate solutions are achievable, which univocally identify
the global minimum. Following this idea, we compared the
performance of the GA optimization with the MC
approach, using test profiles T1 and T2 convoluted with
the T0 spectrum. The values of the GA parameters used
in this study are listed in Table 2. For the convergence tests,



Fig. 6. Performance of GA as a function of the elitist retention for (a) T1

and (b) T2 test EPRI spectra.

Table 2
Settings of the genetic algorithm internal parameters

GA parameters Setings

Population size 100
Crossover probability 0.8
Elitist retention 0.1
Mutation probability 0.02

0 00.5 0.51 1
depth r  a.u./ depth r  a.u./

a b

Fig. 8. Comparison of the original (gray solid line) and fitted (purple
dotted line) profiles for (a) T1 and (b) T2 targets. (For interpretation of the
references to color in this figure, the reader is referred to the web version of
this paper.)
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both algorithms were initialized five times to equilibrate the
results. The fitness evolution with the number of iterations
for the T0 spectra convoluted with the rectangular and
bimodal profiles respectively, is shown in Fig. 7a and b.

The green lines and red lines in Fig. 7 correspond to MC
and GA minimization, respectively. In all cases the RMS
Fig. 7. Performance profiles for GA (red line) and MC (green line) optimization
in this figure, the reader is referred to the web version of this paper.)
values of the MC fitting were distinctly above those corre-
sponding to the GA, and the optimization progress was
quite irregular in nature. For the optimization with the
genetic algorithm, decrease in RMS was exponential at
the beginning, suggesting that the most rapid improve-
ments occurred early in the evolutionary process. After
�105 iterations, the RMS values approaching the zero limit
were reached in the case of the T1 target. For the more
challenging T2 profile the performance of both algorithms
was inferior, and the discrepancy between the progress of
the MC and GA optimization dramatically amplified
(Fig. 7b). After about 104 iterations of GA, the improve-
ment of the fitting began to slow down, but still the values
of RMS keep declining as the algorithm evolves. In Fig. 8a
and b the resultant GA-calculated profiles (dotted lines) are
compared with the test profiles (solid lines), showing an
excellent agreement between the extracted and the test pro-
files in both cases.

Preliminary numerical experiments revealed that noise
does not affect the quality of the recovered profiles appre-
ciably, provided that signal-to-noise ratio is kept above
30 dB. Obviously, location of the global minimum in pres-
ence of considerable noise is a more difficult task, and may
influence the convergence efficacy or lead to artificial pro-
file distortions. More systematic investigations are needed
to definitely resolve this issue.
for (a) T1 and (b) T2 targets. (For interpretation of the references to color
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6.2. Experimental data

The GA optimization subroutine was next evaluated
using the experimental data set E1–E8. The experimental
and calculated images as well as the ensuing concentration
profiles of the HAS-NO radicals produced in the HPEC
samples upon thermal treatment or UVA-irradiation are
shown in Figs. 9 and 10. In all cases the algorithm used
in a totally automated way was able to precisely reproduce
the experimental EPRI spectra, and to yield good quality
concentration profiles as a result. This clearly demonstrates
the capability and the power of the developed method. For
thermally treated HPEC1 and HPEC2 samples, the HAS-
NO radicals are almost homogenously distributed along
the sample depth, producing a quasi-rectangular profile,
except for the sample HPEC1 treated for 10 days at
433 K (Fig. 9a).

In the latter case a well-shaped bimodal concentration
profile was obtained. The UV-degradation of the HPEC1
samples gave rise to a more complicated distribution of
the radicals (Fig. 10), which was also sensitive to the expo-
sure time. For the sake of the comparison between the VC-
GA and FT-MC optimization, both extracted profiles are
Fig. 9. Comparison of the experimental and simulated EPRI test spectra of the
HPEC1 sample after 10 days of degradation at 433 K. (b) EPRI spectrum of H
HPEC1 sample after 168 days of degradation at 393 K. (d) EPRI spectrum of H
concentrations profiles are given on the right side (experimental data taken fr
superimposed in Fig. 10c. As can be seen, their overall
shapes are very similar; the clear advantage of the VC-
GA approach is that it yields a completely noiseless profile,
in contrast to FT-MC method. Undoubtedly, this benefit
should be attributed to the VC ingredient of the ACon pro-
gram, which allows for noise reduction due to its inherent
smoothing ability. The robust GA optimization, however,
assures that even in complicated cases, the concentration
profiles can be extracted more reliably compared to MC,
due to the better convergence.

7. Conclusions

This paper describes the implementation of a genetic
algorithm for reconstruction of 1D concentration profiles
via EPRI spectra fitting. Noiseless profiles can be recovered
successfully by application of the concept of virtual compo-
nents (VC). The efficacy of the method was demonstrated
using synthetic and experimental data sets. The developed
VC-GA approach succeeds in determining complex con-
centration profiles in a fully automated way without any
prior knowledge about their shapes. The algorithm was
implemented into the program ACon, which, owing to
rmally degraded HPEC polymer registered at 340 K. (a) EPRI spectrum of
PEC2 sample after 10 days of degradation at 433 K. (c) EPRI spectrum of

PEC2 sample after 168 days of degradation at 393 K. The corresponding
om Ref. [33]).



Fig. 10. Comparison of the experimental and simulated EPRI spectra of UV-degraded HPEC1 polymer registered at 340 K after (a) 4 days of irradiation,
(b) 10 days of irradiation, (c) 30 days of irradiation and (d) 60 days of irradiation. The corresponding concentrations profiles are given on the right side
(experimental data taken from Ref. [33]).
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the user-friendly interface, allows fast and convenient anal-
ysis of EPRI data. The promising results reported herein
speak in favor of further development of the VC-GA opti-
mization to improve its convergence and elucidate the effect
of the signal noise.
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